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ABSTRACT 

Hall mobilities of three p-type germanium crystals were measured 

at microwave frequencies of 9.5 G Hz from room temperature to near liquid 

helium temperatures by means of a newly designed bimodal rectangular 

cavity. The microwave Hall mobilities were compared with the corres­

ponding d.c. Hall mobilities. As the temperature was decreased, the 

microwave Hall mobility began to deviate from the d.c. Hall mobility at 

about 200°K for each of the less pure samples 439GP and GPl, but not 

until 150°K for the purest sample 439HGP. The difference between the 

microwave and d.c. Hall mobilities at low temperatures was greater in 

the order 439GP > GPl > 439HGP, whereas the purity of the samples followed 

the opposite order 439HGP > GPl > 439GP. The difference between the 

microwave and d.c. Hall mobilities can be explained in terms of a high 

frequency inertial effect in which the relaxation time depends upon 

scattering of the holes by impurities as well as by phonons. This 

inertial effect accounts for the experimental results: one, at low 

temperatures, the microwave Hall mobility was always lower than the 

corresponding d.c. Hall mobility; and two, an increase in impurity 

scattering always increased the difference between the microwave and 

d.c. mobilities of the holes. 
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I. INTRODUCTION 

A. Hall and Faraday Effects 

When we solve the Boltzmann equation (1) 

II + e [E + V X B] • ̂  V + V . Vr f = [|f]^ (1.1) 

for the time-independent fields, in the limit of low magnetic fields, a 

general expression for the current density to the first order in magnetic 

induction can be obtained in tensor notation (2) 

~ (1'2) 

where the subscripts n, K and p run over cartesian coordinates and 

V = velocity vector, 

f = the distribution function of the carriers, 

B = appliui static magnetic induction, 

E = applied electric field, 

e = charge on carrier, 

J-2_] = the rate of charge of f due to scattering of the carrier, 
9t c 

j = current density, 

% = X. (Planck's constant), 

and k = free carrier wave vector. 

The coefficients defined by Equation 1.2 are elements of a generalized 

conductivity tensor and can be written as (3) 

' ̂  n e2 r 3 3f 32 98 
°nç = - -̂ 3̂̂  J d k ̂  T ̂  ̂ 



www.manaraa.com

2 

° * ïA?' 1 sr ' ̂ % lî  ® opq (l-3b) 

where - equilibrium distribution function of carriers, 

6 = electron energy, 

T = relaxation time of carrier, 

and ̂ 0pq = permutation tensor. 

In Equation 1.2 the elements linear in B give rise to the Hall effect (4) 

since the Hall voltage, induced at right angles to the constrained 

current flow in the presence of a magnetic field, is clearly related to 

nÇp' 
c In case of spherical constant energy surfaces, C = , one 

obtains (5) 

ne'̂  
°nç = - °o ' CI.4a) 

and 6 
ne3 

nÇp m 2 ' 
Cl.4b) 

where n = free carrier concentration, 

m = effective mass, 

4- / 00 
and <??> = / dxx^/z e"^ xp. 

3/T /o 

These results can be expressed as the conductivity tensor a CB) 

(1.4c) 

a CB) = 

"o YB 

-YB^ Of 

YBy -YB* 

-YB, 

YB, C I . 5 )  
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where is given by Equation 1.4a and 

ne^ 
Y r <t2> . 

ra'̂  

If a time-dependent electric field which varies sinusoidally with 

angular frequency w, E[t) = E(o)eiwt^ is introduced into the Boltzraann 

equation, the solution can be obtained simply by adopting the time-

independent solution and substituting everywhere | ^ (6). 

According to the Onsager relation (7), the linear terms in B in 

Equation 1.2 contribute antisymetrical elements to the conductivity 

tensor. These elements have an important effect at high frequencies due 

to this antisymmetrical property. In the physical situation, which 

corresponds to the actual experimental arrangement, the radiation propa­

gates in a direction parallel to a cube axis (say the z axis) and B is 

in the direction of propagation, the conductivity tensor will in general 

be in the form of: 

®xx ^xy 0 

a(B) = -®xy Oyy 
0 (1.6) 

0 0 ''zz 

The transformation 

U = 
1 1 
i -i 
0 0 

0 
0 
1 

(1.7) 

diagonalizes with elements 

Oil =r ®xx f (1.8a) 

°22 = ^XX - ioxy, (1.8b) 
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and 033 = o%Z Cl.8c) 

In the new expression = 5% + iEy and E2 = 5% - iEy correspond to 

circularly polarized radiation, rotating clockwise, E2 rotating counter­

clockwise when viewed along the direction of the propagation. The 

propagation constants of E^ and E2 are determined by oi i and 022 

respectively. They are 

Since and Eg are not equal, an incident plane polarized wave emerges 

from the crystal elliptically polarized with the major axis rotated 

through an angle with respect to the polarization of the incident wave. 

This rotation is the Faraday effect of free carriers. The effect is due 

to the influence of the magnetic field upon the translational motion of 

carriers and may thus be considered a distributed parameter extension of 

the Hall effect. It would then be expected that there is a close relation­

ship between the Hall and Faraday effect through 8^gp. Stephen and 

Lidard (8) have pointed out that an explicit expression for the rotation 

angle can be given in terms of T and the band structure constants by 

extending the usual calculation of the conductivity tensor (B 0) to 

high frequency. 

Since the frequency of infrared radiation is generally much higher 

than the collision frequency, the infrared Faraday effect gives information 

concerning the energy contours that is independent of the relaxation 

time (9). With microwaves, however, the radiation frequency and the 

collision frequency can be comparable. In this important frequency range. 

- iwu 
*11 

°22 
(1.9) 
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the transport constants have both real and imaginary parts (see section 

IV., A.) and the complex Faraday effect yields added information con­

cerning details of the scattering process. Because of the complex Hall 

terms, a microwave Faraday effect experiment also contains, potentially, 

more information than an ordinary d.c. Hall effect experiment. 

B. Previous Work on Microwave Hall Effect Measurement 

Various microwave experiments which permit the measurement analo­

gous to that of Hall effect have been performed as mentioned in references 

(10) and (11). From observation at 20 GHz Hambleton and Gartner (12) 

first reported the difference between the d.c. and microwave Hall 

mobility in germanium at low temperatures. Later, Watanabe (13) and Ho 

(11) also found a deviation between the microwave and d.c. Hall mobili­

ties for both n-type and p-type germanium at low temperatures, but the 

discrepancy in the p-type samples was much larger than that in the n-type 

samples. 

C. Band Structure of p-type Germanium (13) 

The states of maximum energy in the valence band of germanium occur 

at k = 0 in the Brillouin zone and would be sixfold degenerate if there 

were no spin-orbit interaction. As a result of spin-orbit coupling, 

this level is split into a fourfold degenerate state at the top of the 

valence band and a doubly degenerate state, which is lowered by approxi­

mately 0.29 ev (14). Away from k = 0 the degeneracy of the upper band is 

lifted giving rise to two bands, the light hole and heavy hole bands. 

Holes are generally located at the center of the zone. Close to k = 0 

both bands are parabolic, but away from k = 0 the assumption that £<=k^ 
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becomes a poor approximation for the light hole band (15). This departure 

from a parabolic behavior introduces a temperature dependence (as the 

distribution spreads in k space) into the transport properties; the ratio 

of light to heavy holes rises, the scattering probabilities of both 

carriers also rise (due to the increase in density of states) and the 

effective mass appropriate to the transport problem also becomes tempera­

ture dependent (16). 

Directional cyclotron resonance measurements on germanium have 

revealed anisotropy in the energy surfaces of the valence states. The 

effect is small for the light hole band, but it is significant for the 

heavy hole band, where the effective mass ranges from 0.29 to 0.36 mo 

(17, 18). Consequently, it is usual to refer to the energy surfaces of 

the heavy hole band as warped spheres. The general expression of the 

energy as a function of wave number for the valence bands of germanium 

near the band edge can be written as (19) 

where x, y and z are referred to the cube axes, the positive sign to 

light holes, and the negative sign to heavy holes. A, B and c are 

dimensionless constants and can be related to the directional effective 

mass (20). 

It should be recognized that the large difference in effective mass 

between the two kinds of holes may lead to relationships between the 

various transport properties which are significantly different from those 

of an equivalent set of carriers that have some suitably chosen single 

(1.10) 
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mass (21). 

D. Mobility of Holes 

Existing information on scattering mechanisms in p-type germanium is 

very incomplete. The most extensive work in this field has been done in 

measuring the temperature dependence of the mobility. The strong tempera­

ture dependence of the mobility of p-type germanium, u <* T~ , was first 

observed by Lawrence (22) and confirmed by Prince (23). The mobility was 

obtained from direct resistivity measurements down to 100°K and was 

inferred from the observed temperature up to 500°K (24). This deviation 

in temperature dependence (T~^*^) from T"^*^ indicates that a simple 

acoustical mode scattering mechanism is inadequate to explain the actual 

physical phenomena. At the present time the origin of this high tempera­

ture dependence of mobility is not well established. 

The factors which may complicate the problem are 

(1) In any approach to quantitative considerations the warped 

nature of the heavy-hole band must be taken into account 

(25, 26). 

(2) The contributions from impurity scattering must be taken 

into account, even for quite pure samples if the temperature 

is below 200°K. The results of Bray and Brown (27, 28) 

indicated that the mobility in high-purity p-type germanium 

at temperatures below 77°K can be accounted for by a 

mixture of acoustical mode and impurity scattering. Also, 

as pointed out by Becker (29) and Willardson and Beer (30), 

the impurity scattering should have a very strong effect. 
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particularly on the light hole band, in reducing its 

mobility even at low ionized impurity concentrations. 

Therefore, it may be necessary not only to treat the 

energy dependence of the relaxation time by a mixture of 

acoustical mode and ionized impurity scattering, but it 

may also be necessary to treat the impurity scattering 

on the light and heavy hole bands in different weight. 

There might be a possible change in effective mass 

with temperature. It should be noted that cyclotron 

resonance measurements have not been made above 100®K 

even in pure germanium (31, 32). However, some evidence 

showed that the light hole might increase their effective 

mass by at least 10 per cent in the temperature range from 

2°K to 100°K. By contrast, the effective mass of heavy 

holes remained unchanged. One may therefore speculate 

on the possibility of a significant temperature dependence 

of the anisotropy parameters. The experimental methods for 

determining the effective mass at high temperature, which 

have proved to be successful for the electrons, are the 

inf Ted Faraday rotation (33) and reflection (34). 

However, because of the complication due to interband 

transition, these methods do not give the desired informa­

tion for holes. Recently, Champlin et (35, 36) 

observed the conductivity effective mass, m^, of holes in 

p-type germanium at 24 GHz throughout the temperature 

range between 90°K and 250°K and found that m^ was 
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significantly larger than the value 0.23 calculated 

from cyclotron resonance data and increased rather 

markedly with temperature (m* = TO*?). If this result 

is true then, following Bagguley and Strandling's (31) 

cyclotron resonance experiment, one would expect the 

effective mass of the light holes to be very strongly 

temperature dependent. 

(4) It is necessary to include optical phonon scattering of 

holes for, as both Harrison (37) and Bir and Pikus (38) 

have shown, there are non-vanishing zero order matrix 

elements for this interaction in germanium. Although 

this scattering can be expected to be of diminished 

importance at temperatures below liquid nitrogen (27, 28), 

yet at temperatures greater than 100*K it must be con­

sidered. In fact, it has been proposed as an explanation for 

the phenomenon (39, 40, 41). 

(5) When the impurity concentration is 10^^ cm^ or greater 

there are indications that hole-hole scattering is 

significant (42). 

Theoretical considerations (13) have shown that any frequency 

dependence of the Hall mobility is closely related to the energy dependence 

of the relaxation time. In principle, measurement of the high frequency 

Hall effect can determine the relaxation time directly and thus con­

tribute to our understanding of the dependence of the mobility in 

p-type germanium. In practice, however, experimental and theoretical 

difficulties have not allowed relaxation times to be obtained in this way. 
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E. Purpose of Investigation 

As mentioned previously several investigators found that the devia­

tion between the d.c, and microwave Hall mobilities for p-type germanium 

did really exist and that the difference was very large at low tempera­

tures. According to Watanabe's (13) conclusion, any hi%h frequency 

effect existing in the Hall mobility must be caused by the combined 

effect of the energy dependence of the relaxation time and of CUT > 1. 

Therefore, this difference between d.c. and microwave mobilities must be 

closely related to scattering mechanisms in the sample although there may 

also be some other high frequency effects. 

In the present investigation an effort has been made 

(1) to develop a system such that the measurement of the 

temperature dependence of the microwave Hall mobility can 

be extended from liquid nitrogen temperature (11) to 

liquid helium temperature, 

(2) to study the effect of impurity scattering on the difference 

between d.c. and microwave Hall mobilities in p-type 

germanium at temperatures ranging from liquid helium 

to room temperature. 
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II. EXPERIMENTAL PROCEDURE 

A. Microwave Measurement 

1. Principle of microwave measurement 

The microwave degenerate cavity system (Fig. 1) and the power 

relationship for the arrangement have been studied in detail by Nishina 

and Danielson (43) and by Liu e£ ai. (44). As shown in Fig. 1, a square 

semiconductor sample of the linear dimension I is placed at the center of 

the end wall of the cavity and is parallel to the xy plane. The cavity 

can have only the lowest two distinct modes of resonant oscillations at a 

single microwave frequency, namely the TE^qi mode and the TEqh mode. 

If the microwave power Pj at resonant frequency is incident on the 

cavity through one branch of the waveguides (say branch I) and excites 

the TE^oi mode of oscillation in the cavity, then when a static magnetic 

field B is applied in the z direction, the Hall effect in the sample will 

excite the TEqh mode of oscillation in the cavity with power A 

part of the power ?2 will be coupled out to the other waveguide. Thus 

P? 
— is a function of the static magnetic field, sample geometry, con-
Pl 
ductivity, dielectric constant, and the Hall mobility. 

Theoretical analysis gives the relationship (44) 

P2 

Pi |1 + Rj 

n + oBqu + i(n^ + oBpu) 
YQ + G + 2a + 2i(x +a) 

( 2 . 1 )  

where P^ = microwave power incident on the cavity to excite the 
TEioi mode, 

P2 = microwave power out of the TEqh mode in the cavity, 

R = reflection coefficient for the power P^ at the iris plane. 
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MEASUREMENT OF HALL MOBILITY IN A 
SEMICONDUCTOR WITH MICROWAVE FIELD 

Po'MICROWAVE POWER 
1 DUE TO HALL EFFECT 

Bo'MAGNETIC FIELD 

COUPLING IRIS 

^iRl^ P, 

P, «MICROWAVE POWER 
SEMICONDUCTOR 
SAMPLE 

Fig. 1. Principle of microwave Hall mobility measurement 
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a = 1_ » 2a = 1 where Q is the Q of the cavity 
h IwWGoJ L2 + L| Qs 

due only to the loss in the sample, 

OQ = d.c. conductivity of the sample = eNUg, 

u =—21 _—L,— = mobility with the effect of relaxation time, 
m 1 + lojT 

N = density of carriers, 

Lg = dimension of the cavity in the z direction, 

£ = effective linear dimension of square sample, 

L = dimension of the cavity in the X or Y direction, 

p = permeability of the sample, 

n + iri' = mutual admittance to represent the coupling due to 
the non-ideality of the cavity, 

W-Wn 
X = , 

Wq 

w = microwave angular frequency, 

(JOQ = resonant frequency of the and the mode, 

YQ = characteristic admittance of the waveguide in the units of 
uic, where c is the capacity of the resonant circuit 
corresponding to the TEj^qi ^^011 mode (YQ is the 
reciprocal of the external Q), 

and G = conductance representing the loss in the cavity wall 
in units of wc (G is the reciprocal of the unloaded 
Q without sample). 

All quantities are expressed in MKS units. 

Equation 2.1 was derived with the assumptions: 

(1) There is only one kind of carrier with isotropic effective 

mass m, and relaxation time T, 

(2) The static magnetic field is weak so that |BQU| « 1. 

(3) The sample size is relatively small compared to the 
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dimensions of the cavity. 

(4) The field distribution inside the sample is approximated 

by a plane wave. The microwave electric field is then 

uniform over the sample surface except at the boundary 

to the cavity wall where it suddenly drops down to 

almost zero. 

If Equation 2.1 is expressed in terms of the conductivity tensor of 

a sample, the result can then be extended to the case of two types of 

carriers and to an arbitrary shape of the energy surfaces (10). If some 

simplified assumptions are made. Equation 2.1 can be applied to p-type 

germanium, which has two types of carriers (light holes and heavy holes). 

Experimentally, the nonideal coupling between the TE^qi mode and 

the TEqii mode was effectively cancelled, so that n + in' = 0. Also, the 

frequency deviation x = was chosen to maximize the relative power 

output Pg, so that the imaginary part of the denominator on the right 

hand side of Equation 2.1 was approximately zero. 

Equation 2.1 is then reduced to (44) 

where u^ = 21 = mobility of the charge carriers given by a d.c. method, 

and a = one-half the reciprocal of the Q of the cavity due only to 
the loss in the sample. 

1 ( 2 . 2 )  

2. Microwave cavity system 

The actual structure of the rectangular degenerate cavity system is 

shown in Fig. 2. The main body of the cavity was made of brass. The 
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inside of the cavity was plated with gold. Two short sections of brass 

waveguide with sharp 135* angle were used to couple the cavity through 

the coupling iris to two thin-walled stainless steel waveguides at the 

other ends. The interior of the stainless steel waveguides were plated 

with silver. Maintenance of the temperature difference between the room 

and the cavity was accomplished through the use of two stainless steel 

waveguides each about three feet long. A brass flange to a vacuum 

chamber was used as the mechanical support for the two waveguides and the 

cavity. 

The degeneracy of the cavity was adjusted by two tuning screws 

placed at the centers of the cavity walls. Also the non-ideal coupling 

between the TE^g^ mode and the TEg^^ mode was reduced by another two 

screws which were set at the corners of the cavity. The cavity and the 

stainless steel waveguide were completely enclosed in the vacuum chamber 

of the cryostat so the heat leak due to convection might be reduced to 

minimum. 

A plastic plate of thickness 1/16" was inserted with an 0-ring 

between the flanges to the stainless steel waveguide and the flange to 

the waveguide outside the vacuum chamber so that the stainless steel 

waveguides could be vacuum-sealed. The reflection due to the plastic 

window was compensated with three screw stubs which were placed on a 

piece of waveguide in approximately a quarter wavelength separation. 

The power reflected by this plastic window under the matching con­

dition and the shift in resonant frequency of the cavity due to the stubs 

were very small and can be neglected within the accuracy of the 

measurement (10). 
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3. Cryostat system and temperature control 

The cryostat shown in Fig. 3 was of common design, having two 

chambers for liquid refrigerant which were isolated from each other and 

from the outside by vacuum chambers. 

The cavity was located at about the middle position of the tail of 

the sample chamber which could either be vacuum-tight or be filled with 

exchange gas to increase the thermal contact between the cavity and the 

coolant. 

The temperatures of the sample below 25°K were measured with an 

Au 0.07 at % Fe vs. Cu thermocouple calibrated by Finnemore e£ al. (45) 

and above 25*K with a Cu vs. constantan thermocouple (46). These 

thermocouple wires were soldered on the cavity block. The thermocouple 

voltage was measured with a Leeds and Northrup 8687 potentiometer. 

In case of the liquid helium measurement the following precooling 

procedure was taken: 

(i) The liquid nitrogen chamber was first filled with 

liquid nitrogen. 

(ii) The sample chamber and the vacuum jacket between the 

liquid helium and liquid nitrogen chambers were then 

isolated from the vacuum system. 

(iii) A small amount of hydrogen gas was introduced into the 

sample chamber (as well as the liquid helium chamber) 

as exchange gas. 

(iv) The temperatures of the system reached equilibrium 

after two hours, the hydrogen gas was then pumped out 

from the vacuum jacket. 



www.manaraa.com

19 

—CAVITY SYSTEM MOUNTING FLANGE 

SAMPLE CHAMBER 
PUMPING PORT 

HELIUM FILLING_PO^ 

PUMPING 
INLETS 

HELIUM VENT a 
PUMPING PORT 

HELIUM FILLING 
TUBE 

VACUUM 
INSULATING 
CHAMBER 

HELIUM CHAMBER 

NITROGEN CHAMBER 

COPPER 

SAMPLE CHAMBER 

Fig. 3. Cryostat 
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(v) The liquid helium was transferred into the liquid 

helium chamber. 

The reason for using hydrogen gas as the transfer gas in the vacuum 

jacket was that a high vacuum between the liquid helium and liquid nitro­

gen chamber was required in order to reduce the loss of liquid helium. 

Since the hydrogen molecule is lighter than the nitrogen and helium 

molecules, it was easier to pump out hydrogen and heat loss was reduced 

to a minimum. This precooling procedure was different from the ordinary 

one in that the liquid helium chamber was not initially filled with liquid 

nitrogen because the helium transfer tube of the present cryostat was 

not made to reach the bottom of the chamber. Thus, if the liquid 

nitrogen was used for precooling it could not be completely forced out 

by helium gas and would take a very long time for its complete evaporation 

before the liquid helium could be transferred. 

Eight liters of liquid helium were required to fill the cryostat 

after precooling. If the exchange gas was controlled properly the cavity 

temperature can be brought down to about 5°K and the liquid helium will 

last for about six hours. 

The temperature control is made by adjusting the gas pressure of 

the exchange gas in the sample chamber and the current through the heater 

wire which was wound on a copper tube attached to the cavity at the bottom 

(see Fig. 2). 

4. Sample preparation 

The single crystals of p-type germanium of different impurity con­

centrations were obtained from Texas Instruments Company. The samples 
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were cut to the size of about 10 mm x 10 mm x 3 mm. The square edges of 

the sample surface were oriented in the <100> and <010> directions so 

that the crystal could be placed in a position symmetrical to both of the 

TEioi mode and TEqh mode of the microwave fields. 

The sample was mounted on one side of the cavity walls with silver 

paint as shown in Fig. 2 and was further pressed against the frame with 

another brass plate. The silver paint kept the sample in good thermal 

and electric contact with the cavity wall. 

5, Microwave measurement procedures 

The microwave system is shown in Fig, 4. A Strand Laboratories, 

Inc.l X-band microwave generator with an average power output of about 20 

milliwatts was used. This oscillator consisted of a klystron, a ferrite 

isolator, a stabilization discriminator, and a reference cavity. The 

ferrite isolator isolated the klystron from the outside circuit so that 

the klystron could operate without being affected by changes in the 

impedance of the microwave load. The frequency was stabilized to the 

tunable reference cavity. 

The measuring system was the same as that described by Nishina (10) 

except for the method of modulation. The microwave signal was modulated 

by a 1000 cycles per second square-wave signal. The modulation was per-

formed by a section of a semiconductor switch/modulator/attenuator . 

^Strand Laboratories, Inc., 294 Center Street, Newton 58, Mass. 

^Somerest Radiation Laboratories, Inc., 192 Central Ave., Stirling, 
New Jersey. 
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The modulator was made in the form of a section of waveguide inserted in 

the microwave circuit before the 10 db coupler. The modulating action 

depended upon the increase in energy absorption resulting from the 

increase in conductivity caused by the injection of excess minority 

carriers. By modulating the conductivity of the semiconductor crystal 

one could obtain a change in the microwave energy transmitted through 

the system. This method of modulation had two advantages: 

(1) The signal was nearly free from phase or frequency 

modulation. 

(2) The modulation did not affect the r.f. oscillator, so 

fluctuation of the r.f. was kept to a minimum. 

The microwave power detected by the diode was then amplified and 

measured by a wave analyzer. 

The procedure for the microwave measurements was as follows. First, 

the sample-loaded cavity was adjusted to the degenerate state. The 

non-ideal coupling between the TE^qi and TEqh mode was reduced to a 

minimum by adjusting the screws at the comers of the cavity. The 

residual part of the non-ideal power output of the cavity was then 

cancelled out at the magic T detector by adjusting the E - H tuner and 

the attenuater in the bridge circuit between 10 db directional coupler 

and the magic T. This adjustment allowed the coherent wave out of the 

10 db directional coupler to have the proper magnitude and phase as it 

reached the magic T. After the cancellation of the non-ideal power, a 

static magnetic field was applied. 

The reading of the P.R.D. attenuator was set to zero at the beginning 

of the measurement. As the static magnetic field was applied, the output 
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detector detected a signal which was related to the microwave Hall power 

P2 shown in Equation 2.1. This signal was read on the wave analyzer in 

an arbitrary scale. The signal corresponding to the input power was 

then measured from the detector at the 20 db directional coupler by 

tuning P.R.D. attenuator to such a value (say db) that the wave 

analyzer gave the same reading as that for the output signal. In order 

to get the actual output to input power ratio, the output of the magic T 

_detector must be calibrated with respect to the output of the detector 

at the 20 db coupler. This calibration was performed by removing the 

cavity and by directly connecting a piece of waveguide in half-circled 

shape between the E-arm of the magic T and the main guide of the 20 db 

coupler. The attenuation of the P.R.D. (say o^db) with the same reading 

at the two detectors was recorded. The power ratio was then given by 

the relation 

Pi 
10 log = ai + 02 (2.3) 

B. d.c. Measurement 

The d.c. conductivity and Hall coefficient measurements were performed 

with a cryostat and sample holder similar to those used by Zrudsky (47). 

The samples for the d.c. measurement were cut with a diamond saw 

from the same crystals immediately adjacent to those parts which were cut 

for microwave measurement. The crystals were cut along their rectangular 

edges in the <100>, <010>, and <001> directions. The dimensions of the 

samples were measured by Gaertner traveling microscope^. 

^The Gaertner Scientific Corp., Chicago, Illinois. 



www.manaraa.com

25 

Three probes were used for these measurements. The details of the 

probe arrangement and voltage relations have been discussed by Heller (48). 

It was found after testing that the values of conductivity and mobility 

were erratic due to the high contact resistance between the probes and 

the sample. In order to reduce this contact resistance, the sample 

surface, with which the probes were in contact, was covered with Zn-10^ 

by means of an ultrasonic solder gun. The following procedure was used 

to minimize the uncertainty in measuring the distance of the probe separa­

tion owing to the presence of the soldered spot. 

(1) The resistance of the sample for an arbitrary distance 

of separation was first measured with a Leeds and Northrup 

Model 7553, Type K-3 potentiometer on a special sample 

holder designed for room temperature measurement. The 

distance of separation was measured with a traveling 

microscope before the spots of contact were covered 

with Zn-10. 

(2) The sample with the soldered Zn-10 spots was mounted on 

the low temperature sample holder and the resistivity 

and Hall coefficient were measured. The resistance 

obtained at room temperature was used to calculate the 

distance of separation of the resistance probes by 

comparing with the resistance obtained in procedure 1 at 

the same temperature. 

The Hall voltage and the resistivity drop were measured by an 

integrating digital voltmeter. 

^10% Zn, 90% Sn. 
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III. EXPERIMENTAL RESULTS 

A. Field Dependence Measurement 

In order that the Hall measurement can be operated in such a field 

region that the low field approximation of Equation 2.2 can be applied 

properly and the system can still give a detectable signal, the field 

FpT 
dependence of the Hall power ratio ( j — ) of the p-type germanium 

samples was first measured at room (300°K), liquid nitrogen (78°K), and 

near liquid helium (5.5°K etc.) temperatures, respectively. From these 

data, then, a suitable magnetic field strength was chosen in the study of 

the temperature dependence of the Hall mobility for the same samples. 

I Po 
Figure 5 shows the magnetic field dependence of J -p— of three 

p-type germanium single crystals (439HGP, GPl, and 439GP) at the three 

different temperatures as mentioned above. The curves show that the Hall 

power ratio deviates from linear relationship with respect to the magnetic 

induction B at higher fields and that this deviation becomes more pro­

nounced and starts at lower field intensity with decrease in tempera­

tures especially at near liquid helium temperatures. As shown in the 

curves, the power ratio started to deviate from linear relationship at 

about 0.35 wb/m^, 0.3 wb/m^, and 0.23 wb/m^ at room temperature, liquid 

nitrogen, and near liquid helium temperatures respectively. This 

phenomenon is probably due to the light holes in a p-type crystal as 

explained by Willardson ejc al. (21). From these values the static 

magnetic field was chosen at 0.2 wb/m^ for the Hall measurements for all 

samples under investigation. This magnetic field intensity was con­

sidered weak throughout the whole range of temperatures studied. 
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B. Temperature Dependence Measurement 

The temperature dependence of the microwave Hall mobility was 

calculated from Equation 2.2. First an a value (2a = the reciprocal of 

the cavity Q given by the losses in the sample) was chosen in such a 

way as to give the best agreement between the d.c. and microwave mobility 

values at room temperature. This value of a was used to determine the 

effective sample size The reason for choosing the effective sample 

size in this manner can be explained as follows. According to the defini­

tion of a(ci = f ^ ^ ) the term I is an effective dimension 
^z wya L + L-

of the sample on the cavity wall which not only depended upon the actual 

sample size but also on the physical contact between the sample and the 

cavity wall. Since the condition of physical contact was not repro­

ducible it was impossible to give a definite proportional constant 

between the effective sample size I and the actual sample size £. However, 

the relaxation time decreased appreciably with increase in temperature 

due to the increase in lattice scattering. Hence, any high frequency 

effect which existed at low temperatures would gradually diminish at 

higher temperatures. The relaxation time of p-type germanium was 

approximately equal to 10"^^ sec (20) at liquid helium temperature and 

wT ^ 1 under the frequency of 10 GHz. Thus, one would expect that 

WT « 1 and the high frequency effect would become insignificant at room 

temperature. The correction factors calculated were 0.496, 0.845, 0.792 

and the effective sample size 1 then became 9.0 X 0.496 = 4.47 mm, 9.7 X 

0.845 = 8.20 mm, and 9.1 X 0.792 = 7.21 mm for samples 439HGP, GPl, and 

439GP respectively. These Z values were used in the calculation of a at 
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different temperatures. The temperature dependence of a was assumed to 

be inversely proportional to the square root of the d.c. conductivity of 

the same sample. 

The characteristic admittance YQ of the waveguide was found from 

the loaded Q of a nondegenerate cavity without the sample and from the 

reflection coefficient of the cavity at resonant frequency in the plane 

of the cavity iris. The YQ value so calculated was equal to 9.87 X 10"^ 

and was assumed to be constant over the whole temperature range, since 

the characteristic impedance of the waveguide was practically independent 

of the temperature of the cavity and the electromagnetic energy stored 

in the cavity was determined once the cavity dimensions and the field 

amplitude were given. 

The reciprocal of the loaded Q of the cavity with the sample, 

YQ + G + 2a, was given from the relationship 

where the reflection coefficient R of the cavity was measured at the 

resonance frequency. The argument of R was determined from the difference 

in the position of the standing wave minima when the input iris to 

cavity was opened and closed with a brass plate. It was impossible to 

determine YQ + G from the Q of the cavity without a semiconductor sample 

because of the following reasons. 

(1) When a part of the cavity wall was replaced by a different 

material with resistivity higher than that of the cavity 

wall by a factor of 10^ or greater, the microwave field 

distribution on the wall was perturbed appreciably so 
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that G would not be the same as that without the sample. 

(2) The Q value of the cavity was very sensitive to how the 

sample frame was placed in contact with the main body 

of the cavity. Once the frame was removed, it was 

difficult to obtain a reproducible Q value. 

Since the skin depth 6 is inversely proportional to the square root 

of the conductivity [6 = (nfuoyl/Z], the largest value of the skin depth 

of the samples would occur at room temperature (in the extrinsic region 

the conductivity of semiconductor increases as the temperature decreases). 

The skin depth of samples 439HGP, GPl, and 439GP were 1.16 mm, 1.33 mm, 

and 0.32 mm respectively at room temperature and the corresponding 

thickness of the samples were 3.3 mm, 3.5 ram, and 2.4 mm respectively. 

Hence, the ratio of sample thickness to skin depth of the samples was at 

least greater than 2.5 and it was reasonable to assume that the field was 

completely attenuated inside the sample as the microwave field propagated 

through the sample. 

Figure 6 showed that the microwave Hall mobility of sample 439GP 

started to deviate from its d.c. Hall mobility at about the same tempera­

ture (about 200°K) as in sample GPl, and this deviation appeared at a much 

higher temperature than that in sample 439HGP (about 150°K). The dif­

ference between the d.c. and the microwave mobilities at low temperatures 

became greater in the order of 439GP > GPl > 439HGP as shown in Fig. 7 

in terras of per cent deviation, whereas the purity of the samples 

followed the opposite order 439HGP > GPl > 439GP as shown in the resis­

tivity curves (Fig. 8). This result clearly indicates that impurity in 
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the sample definitely has some effect on the difference between the 

d.c. and microwave mobilities. 
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IV. DISCUSSION 

A. Charge Carrier Inertia 

The considerable difference between the microwave and the d.c. Hall 

mobilities at low temperatures may be attributed to 

(1) the carriers inertial effect, and 

(2) the combined phonon and impurity scattering. 

The response of charge carriers to a rapidly varying electric field 

becomes limited at high frequencies due to the inertia of the carriers 

and results in an out-of-phase component of motion between the charge 

carriers and the applied field. If we introduce the concept of relaxation 

time and effective mass into the motion of free carriers in a solid, the 

semi-classical equation of motion for carriers may then be written in 

the form 

m (^ + i V) = F (4.1) 
dt T 

as first proposed by Dresselhaus et a^. (20), where F is the average 

external force acting on a carrier. The terra H 'v has the form of a 

frictional or damping force, with — playing the part of a coefficient of 

friction, and the term m ̂  describes inertia effects and should be 

included in problems where the applied field is time-dependent. In case 

the field is varied as e^^t^ Equation 4.1 becomes 

m(iw + 1.) V = F (4.2a) 

or m(l + iwx) v = xF (4.2b) 

It is then clear from Equation 4.2b that the term wx is associated with 
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the carrier inertia and that the inertial effect is frequency and energy 

dependent (t is energy dependent). Physically, at frequencies such that 

wT » 1 the free carriers undergo many oscillations without any scattering 

interaction with their surroundings. In the absence of scattering inter­

action the carriers would move out-of-phase with the applied field, and 

no power would be dissipated. As the frequency is lowered the out-of-

phase motion becomes increasingly hindered by scattering processes until, 

at sufficiently low frequencies (wt l), the out-of-phase motion 

becomes insignificant in comparison with the in-phase motion due to the 

damping produced by scattering. These in-phase and out-of-phase motions 

of charge carriers result in the conductivity as a complex function of 

frequency. The in-phase component contributes to the real conductivity 

and the out-of-phase component contributes to the permittivity. Thus, 

the most interesting effects are expected to be at frequencies such that 

UT > 1. 

To simplify the mathematical analysis and to provide a preliminary 

explanation of the experimental results, let us consider the transport 

coefficients a and 0 in Equation 1.2. If we assume that the band 

structure is a nondegenerate single-valley centered at k = 0, the high 

frequency dependence of these coefficients could be written as (49) 

o(w) _  <x /Çl + iuiT) > 
0(0) <T> <T> 

(4.3) 

6 _ <T /̂ (1 + U)T) 

0(0) <T^> 
(4.4) 

normalized with respect to the d.c. values. The real and imaginary parts 
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of Equation 4.3 and 4.4 evaluated as function of w<T> for the case of 

Maxwell-Boltzmann distribution and <t> = constant (neutral impurity 

scattering) (50), t (acoustic mode scattering) (51), and t « 3/% 

(ionized impurity scattering) (52) are shown in Fig. 9 and 10. From these 

figures one notices that 

(1) any deviation from a constant relaxation time will 

move frequency-dependent effect to correspondingly 

lower frequencies, 

(2) the high frequency effect will always reduce the 

real part of conductivity to a value smaller than 

d.c. conductivity, and 

(3) for the same w<t>, the real part 2^^ corresponding to 
o(0) 

impurity scattering is less than the value correspond­

ing to lattice scattering. 

Since the real part of conductivity associates with the energy dissipated 

Pi ' 
by carriers, and the microwave Hall mobility is proportional to 

as given in Equation 2.1 (P2 related to the energy absorpted by the 

carriers), one would deduce from the above arguments that the microwave 

mobility will always be lower than the corresponding d.c. value when 

u)T > 1 and that the difference between the microwave and d.c. mobilities 

will become greater with increasing impurity scattering. If we consider 

the combined lattice and impurity scattering one would expect the curve 

of Re to be at somewhere between the curves due to pure lattice 
a(0) 

scattering and pure impurity scattering. This conclusion agrees quali­

tatively with the present experimental result. 



www.manaraa.com

T e) — E 

REAL PART 

T(E) • constant 

TE — e 

NEGATIVE 
IMAGINARY 

PART 

W 
00 

50D 

W<T> ' 

Fig. 9. Real and imaginary parts of for single-valley model and nondegenerate statistics 
cr(o) 

(Reproduced from Champlin, Phys, Rev. 130, p. 1374. (1963)) 



www.manaraa.com

-1/2 T(0 
lo 

real part 
03 

OS T(e)= constant 

NEGATIVE 
i*AGlNARY 

PART 

0.2 

OJ 

0̂  .005 05 ZO r 10 

W<T> 

10.0 

QlZ 

Fig. 10. Real and imaginary parts of for single-valley model and nondegenerate 
statistics 8(0) 
(reproduced from Chanplin, Phys. Rev. 130, p. 1374, (1963)) 



www.manaraa.com

40 

By the definition of Hall mobility as defined by Watanabe (13) one 

can easily derive the ratio of high frequency Hall mobility to d.c. Hall 

mobility for the simple model as mentioned above. According to Watanabe 

the Hall mobility û  is defined as 

u,, = — 'll 
(4.5) 

H B Re (cTq) 

where Oq and are the conductivity matrix elements defined in the 

following equation 

(4.6) 

So, by comparing Equation 4.6 with Equations 1.2 and 1.6 we have 

f f \ 

ix ao ai 

jy -ai ag 

Uĵ (a)) 
8(w) 
6(0) 

Re 
o(w) 
FfOT 

(4.7 

Figure 11 is a plot of Equation 4.7 as a function of u<T> for t = ~V̂  

and T <* 3/2. Data given in Fig. 9 and 10 were used in the calculation. 

The results shown in Fig. 11 indicate that the high frequency Hall 

mobility corresponding to impurity scattering (x = Ẑ̂ ) is smaller than 

that corresponding to phonon scattering (x « ~̂ /2), 

Recently, Champlin (53) measured the microwave conductivity 

of p-type germanium at 24 GHz and reported that the microwave conductivity 

was very close to d.c. conductivity at room temperature but dropped 

below the latter with decreasing temperatures and that the microwave 

conductivity was approximately one-half the d.c. value of liquid nitrogen 
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temperature. The present results on Hall mobility showed that the per 

cent deviation between microwave and d.c. mobilities are 21%, 38%, and 45% 

at liquid nitrogen temperature for samples 439HGP, GPl, 439GP respectively, 

indicating a remarkable agreement with the conductivity results reported 

by Champlin. 

B. Mixed Scattering by Lattice Vibrations and Ionized Impurities 

In the standard treatment of mixed scattering, the force term (see 

Equation 1.1) in the Boltzmann equation is assumed to arise only from the 

effect of the applied fields and f is a function of velocity only so 

9f 
that ~ vanishes. Also, relaxation time is estimated by defining an 

effective relaxation time by the relation (7) 

where and xj are phonon and impurity scattering relaxation time re­

spectively and are computed under the assumption that the two processes 

are independent. Also, this additive relationship is valid only if the 

effect of both impurity and phonon scattering can be represented by 

means of single relaxation time. In an actual case, however, a charge 

carrier may interact with a number of phonons while traversing the field 

of a single impurity center, and therefore the two processes cannot be 

strictly independent. 

Reiss and Anderman (54) and Frisch and Lebowitz (55) have considered 

this problem and tried to avoid this inconsistency. They developed a 

more rigorous approach by treating the action of the impurities as part 

of the Hamiltonian of the system, but continuing to treat the effect of 
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phonon collisions by means of stochastic transition probabilities, i.e., 

the phonon scattering enters through the usual linear Boltzmann-type 

collision term and is described by the relaxation time T. This treatment 

implies that the impurities are regarded as the source of an additional 

applied electric field with which the electrons are always interacting. 

Thus, one has to use a space-dependent, and velocity-dependent distribu­

tion function, and the problem of the independence of the two scattering 

processes does not exist. This approach introduces important changes in 

the problem, but does not appear to be easy to solve. Frisch and 

Lebowitz only showed that the addition of impurities always decreased the 

conductivity. By this general conclusion one would expect that, if a 

more rigorous approach were used in the analysis of the high frequency 

transport coefficients, the impurity scattering might further result in 

lower microwave Hall mobility as discussed in section VI, A. 

C. Hole Contribution to the Dielectric Constant 

The relative dielectric constant of germanium is usually assumed to 

be a constant 16. It arises from the polarization of lattice. At micro­

wave frequencies, however, it becomes possible to observe the carrier 

contribution to the dielectric constant (56). The hole contribution to 

the dielectric constant can be expressed as (57) 

where Dĵ gle ~ dielectric constant due to holes, 

= dielectric constant of free space, 

Ug = d.c. mobility. 
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and uj^ = Hall mobility. 

This equation was derived on the assumption of a Maxwellian distribu­

tion of velocities for the holes, and an energy dependent relaxation 

time. Experimentally, Champlin et al. (35) reported that the inertia of 

the carrier could have a considerable influence on the dielectric constant 

of p-type germanium. Their results showed that the relative dielectric 

constant was 16 at room temperature but it dropped to about 3 at liquid 

nitrogen temperature. This difference is due to the hole contribution 

(negative) at OJT > 1. 

To treat the impurity scattering Brooks (58) and Dingle (59) used 

a screened scattering potential 

|VCr)l . gf -r/*. (4.10) 

where D = dielectric constant of the crystal, 

and a = Debye-Huckel length (or screening distance). 

This potential is inversely proportional to the dielectric constant. 

Thus, at high frequencies, the field of an impurity center (E = - 7V) which 

interacts with the charge carriers becomes stronger as the temperature 

decreases. 

D. Conclusions 

The present investigation has shown the following. 

(1) The difference between the microwave and d.c. Hall 

mobility exists at low temperatures and the microwave 

Hall mobility is always lower than the corresponding 

d.c. value. The deviation becomes greater than 50% at 
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temperatures below liquid nitrogen. 

(2) The impurity scattering may be responsible for the 

major part of the difference at low temperatures. The 

difference increases with increasing impurity concentra­

tion. With the same impurity concentration the scatter­

ing function may become stronger at low temperatures 

because of the modification of the scattering potential 

due to the negative contribution of holes to the dielectric 

constant at frequencies such that wt > 1. 

E. Future Work 

Brooks (60) has pointed out that for p-type germanium, interband 

scattering is the principal mechanism that determines the relaxation time 

of the light holes, while intraband scattering is the principal mechanism 

that determine the relaxation time of the heavy holes. Thus, the 

scattering depends essentially on the density of final states which, in 

either case, is principally the density of states for the heavy hole 

band. Therefore, the collision frequencies of the two types of holes 

are approximately equal. The relaxation times, which are the reciprocals 

of the collision frequencies, must also be equal for two types of 

holes. Although this argument has not yet been proven, it seems to 

be a reasonable approximation. (In the cyclotron resonance measurement, 

the relaxation times of the light and heavy holes were estimated to be 

approximately equal on the basis of line width (20)). So, if we assume 

the relaxation times of the two kinds of holes to be equal, we can 

simplify the quantitative analysis by writing the ratio of the Hall 
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mobility at microwave frequencies to the Hall mobility at direct current. 

From Watanabe's formula (13), 

This ratio is independent of effective mass and density of carriers. The 

quantity on the left hand side can be determined from the experimental 

results. The only unknown term is the relaxation time T. With the 

present experimental results and with the assistance of a computer, it 

is therefore possible to calculate the temperature dependence of the 

relaxation time. The d.c. Hall mobility can then be used to obtain the 

temperature dependence of the conductivity effective mass. 

we have "̂Ĥ mv <T> 
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VII. APPENDIX 

Table 1. d.c. electrical measurement of p-type germanium (439HGP) 

Hall 

coefficient Resistivity Hall 
p mobility 

Temperature (m3/coulomb) (ohm-m) û  
(°K) Cx 10-3) (x 10-2) (m2/V-sec) 

4.8 7172.0 322.0 2.23 
5.9 7051.0 289.0 2.44 
7.0 582.0 22.50 2.58 
11.5 489.0 18.30 2.67 
14.1 134.0 5.320 2.51 

16.0 71.2 2.860 2.49 
20.0 27.7 1.140 2.42 
25.0 13.9 0.584 2.37 
32.0 8.64 0.376 2.30 
39.0 7.24 0.327 2.21 

46.0 6.66 0.318 2.10 
53.0 6.35 0.322 1.97 
60.0 6.05 0.334 1.81 
65.0 6.13 0.360 1.70 
70.0 5.73 0.372 1.54 

74.2 6.06 0.401 1.51 
81.0 6.21 0.448 1.39 
87.0 6.00 0.464 1.29 
94.0 6.03 0.509 1.19 

102.0 6.21 0.580 1.02 

110.0 6.58 0.652 1.01 
118.0 6.76 0.724 0.933 

125.0 7.26 0.823 0.882 

133.3 7.47 0.931 0.801 

140.0 7.82 1.020 0.767 
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Table 1. (Continued) 

Hall 
coefficient Resistivity Hall 

Rh mobility 

Temperature (m3/coulomb) (ohm-m) % 
(°K) (X 10-3) (x 10-2) (m2/V-sec) 

145.2 8.02 1.084 0.740 
155.2 8.08 1.221 0.662 
165.0 8.45 1.342 0.630 
177.0 9.32 1.641 0.568 
189.6 10.27 1.963 0.523 

200.0 9.71 2.031 0.478 
210.0 9.76 2.147 0.449 
220.3 10.55 2.493 0.423 
230.5 10.82 2.711 0.399 
242.3 10.66 2.874 0.371 

258.0 11.93 3.480 0.343 
269.4 11.98 3.722 0.322 
272.0 12.41 3.916 0.317 
277.0 12.54 4.044 0.310 
281.0 12.91 4.273 0.302 

288.0 12.77 4.347 0.292 
294.0 12.89 4.509 0.286 
300.0 14.60 5.336 0.274 



www.manaraa.com

55 

Table 2. d.c, electrical measurement of p-type germanium (GPl) 

HalL 
coefficient Resistivity Hall 

R}̂  p mobility 

Temperature (m̂ /coulomb) (ohm-m) 
(°K) (x 10-3) (x 10-2) (m2/V-sec) 

4.8 51.45 5.92 0.869 
7.2 55.45 5.90 0.940 
10.0 47.70 4.68 1.020 
15.2 22.14 1.96 1.129 
18.3 12.30 1.05 1.168 

20.0 '6.876 0.582 1.180 
23.8 4.436 0.374 1.184 
28.0 3.045 0.260 1.172 
31.8 2.474 0.208 1.185 
34.5 2.158 0.181 1.190 

39.5 1.797 0.150 1.191 
46.6 1.506 0.127 1.186 
57.8 1.276 0.112 1.144 
64.0 1.205 0.109 1.109 
66.7 1.179 0.108 1.088 

69.3 1.158 0.108 1.069 
73.8 1.129 0.109 1.035 
75.9 1.118 0.110 1.020 
79.7 1.103 0.111 0.992 
84.3 1.086 0.114 0.952 

91.4 1.069 0.119 0.898 
102.6 1.058 0.131 0.807 
111.9 1.056 0.142 0.745 
106.0 1.055 0.137 0.769 
113.5 1.054 0.144 0.733 

117.4 1.056 0.149 0.709 
122.5 1.055 0.156 0.675 
129.7 1.059 0.167 0.634 

143.0 1.071 0.190 0.565 
153.0 1.081 0.210 0.515 

155.3 1.094 0.216 0.508 
162.3 1.104 0.232 0.476 
167.5 1.105 0.244 0.453 
169.8 1.108 0.250 0.443 
172.3 1.115 0.257 0.434 
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Table 2. (Continued) 

Hall 
coefficient Resistivity Hall 

p mobility 

Temperature (m̂ /coulcmb) (ohm m) H 
(°K) (x 10-3) (x 10-2) (m2/V-sec) 

174.0 1.120 0.26,1 0.430 
174.7 1.157 0.263 0.440 
179.5 1.197 0.274 0.437 
201.0 1.195 0.329 0.364 
217.8 1.216 0.377 0.323 

227.8 1.215 0.408 0.298 
270.7 1.206 0.573 0.210 
242.3 1.181 0.463 0.255 
258.0 1.198 0.523 0.229 
280.0 1.210 0.743 0.198 

291.8 1.206 0.663 0.182 
299.0 1.221 0.700 0.174 

Table 3. d.c. electrical measurement of p-type germanium (439GP) 

Hall 
coefficient Resistivity Hall 

R̂  P mobility 

Temperature (m3/coulomb) (ohm m) H 
(°K) (x 10-3) (x 10-2) (n//V-sec) 

5.5 88.80 1.930 0.460 
9.5 68.54 1.221 0.562 
14.0 46.74 0.740 0.617 
19.0 31.14 0.475 0.654 
25.0 19.44 0.279 0.698 

28.4 15.96 0.222 0.718 
32.0 13.52 0.185 0.734 
34.2 12.52 0.166 0.754 
37.0 10.73 0.141 0.757 
39.0 9.88 0.132 0.748 
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Table 3. (Continued) 

Hall 
coefficient Resistivity Hall 

R}̂  p mobility 

Temperature (m̂ /coulomb) (ohm-m) 
C°K) (x 10-3) (x 10-2) (m2/V-sec) 

42.0 9.00 0.118 0.763 
48.0 7.68 0.101 0.762 
49.7 7,51 0.0971 0.774 
52.0 7.04 0.0929 0.757 
54.2 6.68 0.0887 0.753 

58.0 6.37 0.0855 0.746 
63.0 5.89 0.0814 0.724 
68.0 5.66 0.0784 0.722 
72.0 5.41 0.0778 0.696 
79.1 5.31 0.0773 0.687 

87.0 5.23 0.0779 0.671 
94.0 5.02 0.0794 0.632 
99.3 4.90 0.0813 0.603 
113.0 4.77 0.0866 0.551 
118.0 4.77 0.0903 0.528 

127.0 4.93 0.0969 0.509 
141.4 5.14 0.110 0.409 
150.4 5.11 0.118 0.432 
159.6 5.23 0.129 0.407 
170.0 5.34 0.141 0.379 

182.0 5.44 0.156 0.348 
189.5 5.54 0.167 0.332 
198.0 5.64 0.180 0.313 
208.0 5.83 0.197 0.296 
219.0 5.92 0.216 0.274 

258.4 6.12 0.290 0.211 
271.0 6,06 0.317 0.191 
286.0 6.18 0.351 0.176 
300.0 6.33 0.391 0.162 
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Table 4. Magnetic field dependence of I for p-type germanium single 
crystals i ̂ 1 

Magnetic 
field 
B (Wb/m̂ ) (x 10-3) (x 10-3) 

P2 

(x 10-3) 

A. Sample 439HGP 

Temp. 300°K Temp. 78°K Temp. 5.5°K 

0.17 2.09 5.750 7.372 
0.20 2.45 6.781 8.640 
0.28 3.41 9.433 11.58 
0.36 _ 4.42 11.91 13.46 
0.46 5.41 14.20 15.01 
0.57 6.49 16.76 16.00 
0.69 7.34 18.64 16.36 
0.82 7.96 19.59 16.64 

B. Sample GPl 

Temp. 300°K Temp. 78°K Temp. 6°K 

0.17 2.26 6.160 9.262 
0.20 2.68 7.234 10.85 
0.28 3.77 10.07 14.11 
0.36 4.81 12.74 16.24 
0.46 5.94 15.58 17.89 
0.57 7.31 18.26 19.04 
0.69 8.33 20.17 19.76 
0.82 9.24 21.73 20.22 

C. Sample 439GP 

Temp. 300°K Temp. 77.8°K Temp. 5.3°K 

0.17 1.15 6.363 7.652 
0.20 1.35 7.410 8.343 
0.28 1.93 10.44 12.45 
0.36 2.45 13.15 15.07 
0.46 3.04 16.11 17.26 
0.57 3.62 18.70 18.94 
0.69 4.11 21.12 19.97 
0.82 4.50 22.69 20.66 
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Table 5. Microwave Hall mobility of p-type germanium (439HGP) at low 
temperature 

Temperature 
C'K) 

2a 

(X 10-3) 

Yq + g + 2a 

2a 

P2 2 

i Pi 1 1 + R 1 Bq 

(x 10-3) 

Hall 
mobility 

"H 
(m2/sec-V) 

5.5 1.594 5.175 2.552 1.32 
7.5 1.350 5.804 2.533 1.47 
9.6 1.135 6.608 2.239 1.48 
14.3 0.8392 8.561 1.740 1.49 
19.4 0.5727 11.82 1.294 1.53 
20.0 0.5332 11.99 1.268 1.52 
27.0 0.3939 15.23 0.9718 1.48 
34.0 0.3638 15.68 0.8928 1.40 
40.2 0.3534 15.14 0.9380 1.42 
47.8 0.3475 14.49 0.9177 1.33 
54.0 0.3514 13.48 1.001 1.35 
60.0 0.3575 12.15 1.029 1.25 
70.0 0.3749 10.95 1.032 1.13 
78.0 0.3939 10.72 1.026 1.10 
86.0 0.4179 10.75 0.9672 1.04 
96.2 0.4515 9.793 1.003 0.982 
105.8 0.4832 9.436 0.9569 0.903 
116.0 0.5242 - 8.925" 0.9198 0.821 
126.0 0.5674 8.489 0.9402 0.798 
136.2 0.6064 8.105 0.9046 0.733 
146.0 0.6476 7.803 0.8485 0.662 
156.0 0.6918 7.475 0.8576 0.641 
166.0 0.7337 7.212 0.8359 0.603 
176.0 0.7751 6.968 0.8111 0.565 
186.0 0.8381 6.618 0.8161 0.540 
196.0 0.8836 6.412 0.7702 0.494 
206.0 0.9301 6.196 0.7281 0.451 
216.0 0.9944 5.895 0.7413 0.437 
226.0 1.038 5.763 0.7128 0.412 
236.0 1.091 5.572 0.6998 0.390 
246.0 1.127 5.484 0.6711 0.368 
256.0 1.189 5.262 0.6632 0.349 
270.0 1.294 4.914 0.6533 0.321 
285.0 1.351 4.777 0.6217 0.297 
300.0 1.381 4.744 0.5755 0.273 
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Table 6. Microwave Hall mobility of p-type germanium (GPl) at low 
temperature 

Temperature 
(°K) 

2ct 

(x 10-3) 

Yq + G + 2c( 

2a 

1 + R| Br 

(x 10-3) 

Hall 
mobility 

"H 
(m2/sec-V) 

6 6.84 1.106 29.40 0.325 
8 5.56 1.315 30.50 0.401 
10 5.22 1.364 31.55 0.430 
12 4.55 1.502 30.61 0.460 
16 3.53 1.870 28.34 0.530 
19 2.60 2.448 22.96 0.562 
27 1.38 4.451 13.48 0.600 
30 1.25 4.683 13.67 0.640 
34 1.14 4.950 12.73 0.630 
38 1.04 5.167 12.00 0.620 
44 0.957 5.369 11.74 0.630 
55 0.886 5.527 11.49 0.635 
65 0.858 5.455 11.00 0.600 
75 0.864 5.182 11.60 0.601 
78 0.867 5.127 11.53 0.591 
84 0.888 5.108 11.47 0.585 
95 0.912 5.080 11.28 0.573 
105 0.953 4.870 11.13 0.542 
116 0.992 4.472 11.13 0.531 
125 1.04 4.667 8.843 0.501 
135 1.09 4.529 10.42 0.472 
144 1.14 4.434 10.38 0.460 
155 1.20 4.358 10.10 0.440 
165 1.26 4.247 9.537 0.405 
176 1.33 4.083 9.431 0.385 
185 1.39 3.986 9.284 0.370 
194 1.46 3.858 9.289 0.358 
205 1.52 3.760 8.778 0.330 
214 1.59 3.656 8.563 0.313 
225 1.66 3.550 8.143 0.289 
236 1.73 3.467 7.874 0.273 
244 1.80 3.379 7.549 0.255 
255 1.86 3.300 7.394 0.244 
265 1.93 3.224 6.857 0.221 
275 2.01 3.127 6.622 0.207 
285 2.09 3.033 6.366 0.193 
300 2.18 2.907 6.088 0.177 
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Table 7. Microwave Hall mobility of p-type germanium (439GP) at low 
temperature 

Temperature 
(°K) 

2a 
(x 10-3) 

Yo + G + 2a 

P2 

FT 

2a 

|1 + R|Bo 

(x 10-3) 

Hall 
mobility 

"H 
(m̂ /sec-V) 

5.3 2.209 1.247 8.821 0,110 
5.7 2.209 1.223 9.485 0.116 
8.5 1.894 1.407 11.09 0.156 
9.7 1.765 1.482 10.68 0.169 
13.9 1.398 1.843 11.29 0.208 
15.4 1.283 1.977 11.33 0.224 
19.0 1.084 2.304 10.98 0.253 
23.0 0.9105 2.711 9.889 0.268 
27.0 0.7921 3.078 9.421 0.290 
32.0 0.6869 3.520 9.120 0.321 
36.0 0.6204 3.881 8.220 0.319 
41.0 0.5632 4.276 7.928 0.339 
46.0 0.5238 4.635 7.400 0.343 
52.0 0.4902 4.933 7.338 0.362 
59.0 0.4665 5.205 7.012 0.365 
66.0 0.4526 5.409 6.637 0.359 
71.0 0.4484 5.524 6.698 0.370 
77.8 0.4468 5.637 6.688 0.377 
84.0 0.4477 5.667 6.511 0.369 
90.0 0.4502 5.700 6.737 0.384 
100.0 0.4577 5.694 6.358 0.362 
110.0 0.4692 5.637 6.582 0.371 
119.0 0.4843 5.565 6.613 0.368 
130.0 0.5066 5.436 6.806 0.370 
137.0 0.5211 5.519 6.541 0.361 
146.0 0.5427 5.401 6.518 0.352 
155.0 0.5654 5.394 6.378 0.344 
166.0 0.5927 5.379 6.098 0.328 
178.0 0.6240 5.362 5.986 0.321 
186.0 0.6473 5.444 5.694 0.310 
197.0 0.6802 5.470 5.429 0.297 
209.0 0.7175 5.448 5.195 0.283 
220.0 0.7504 5.498 4.875 0.268 
231.0 0.7829 5.573 4.561 0.254 
240.0 0.8477 5.403 4.442 0.240 
250.0 0.8406 5.719 3.953 0.226 
260.0 0.8720 5.784 3.649 0.211 
274.0 0.9162 5.774 3.377 0.195 
286.0 0.9560 5.813 3.097 0.180 
300.0 1.005 5.765 2.810 0.1621 



www.manaraa.com

62 

Table 8. temperature 

("h) de 

(uH) de - (uh) mv 
Temperature tujjJdc 

(*K) Sample 439HGP Sample GPl Sample 439GP 

6 44.6 64.7 74.6 

10 43.1 58.3 71.2 

15 41.2 53.6 66.5 

20 39.5 51.3 64.1 

30 37.0 49.2 60.4 

40 34.4 48.4 58.2 

SO 31.3 47.0 54.8 

60 28.0 44.2 31.4 

70 24.4 41.5 48.5 

80 21.4 38.1 44.5 

100 15.2 31.5 37.8 

150 7.0 15.4 21.2 

200 0 7.4 8.3 
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